

Low DT, Low Heat Flux, "Natural Heat Sources"

- Viability of using environmentally derived heat sources for powering thermoelectric generators is being evaluated
 - Generally involve processes with DTs < 100°C
 - More suited for low power applications (< 100 mW)
- Types of heat sources that are considered include:
 - Temperature gradients between the soil and ambient air
 - Heat liberated during the decomposition of organic material
 - Temperature gradients in liquid media
 - Production of biogas from the decomposition of organic material (will be used subsequently in catalytic burner)
 - DT's as low as 2°C can be considered as potential heat sources
- Key to selection process: how easily heat source can be harnessed and type of heat collection methods used
 - Thermal processes will be assessed in terms of the energy content available for reaction with the thermoelectric converter.

Energy Harvesting Concepts

Natural Thermal Gradients

Environmental heat source development

- Use of natural temperature gradients
 - To provide 10-100s of mW output (can be as small as 1°C).
- One potential system involves the use of aluminum fins and heat pipes
 - Air/soil temperature difference during day, night
 - Calculations show feasibility of concept for very low wind speed values (0.5 to 0.75 m/s)
 - Operating current and voltage can be tailored by using parallel strings of TE legs
 - Power conditioning

Miniaturized Thick-Film TE Converter

Objective: Develop thermoelectric microdevices using integrated-circuit type fabrication processes, electrochemical deposition and high thermal conductivity substrates

Technical Approach

- Synthesize 5-50 mm thick films of thermoelectric materials using electrochemical deposition
- Develop stable metallization to diamond, AIN, Si substrates
- Develop novel techniques to fabricate microdevices

- Enabling technology
- Based on thousands of micron-size thermoelectric elements
- Challenge: device fabrication
 - Various designs depending on operating conditions (DT, Q, P_{out})
 - Performance, reliability
 - Integrate electrochemistry and electronics technology

Slide 17

Thermoelectric Microdevices Issues

- Miniaturized device with a classical TE module configuration
- Miniaturization issues
 - Electrical contact resistance
 - More thermoelectric legs, more electrical connections
 - Develop <u>high quality metallization and bonding</u> schemes
 - Thermal resistance
 - Due to the ceramic substrates separating the TE material from the heat source and heat sink
 - Heat transfer is an important issue
 - Increases because the relative thickness of the substrates increases compared to the TE leg thickness
 - Use high thermal conductivity substrates such as diamond, AIN, BeO, Si/SiO₂

Electrochemical Deposition

- A promising route to deposition of thick films of TE materials
 - Has been extensively used for CdSe, CdTe and alloys
 - Recent results on PbTe, PbSe
 - High deposition rate on metallic substrates
 - Room temperature process, inexpensive and scaleable
- Bi₂Te₃ deposition

• $13H^+ + 18e^- + 2BiO^+ + 3HTeO_2^+$ ® $Bi_2Te_3^- + 8H_2O$

- JPL using potentiostatic control
 - Manual, computer controlled-equipment
- Many process parameters
 - Deposition voltage, deposition current [Bi] concentration, [Bi]/[Te] ratio...
 - Deposition setup, stirring rate, substrate quality, pH, temperature
- Deposition of other metallic layers
 - Cu, Ni, Pt, PbSn solder...

Deposition of Thermoelectric Legs California Institute of Technology

- Using patterned photoresist
 - Team has developed thick photoresist capabilities
 - Up to 75 mm thick (positive PR)
 - Using conventional UV photolithography equipment
- Experimental results to date
 - Various leg geometries successfully obtained
 - 20 mm tall, 50 mm diameter (cooling)
 - 50 mm tall, 10 mm diameter (power generation)
 - Leg geometry tightly conforms to pattern geometry
 - Legs can be confined to patterned hole
 - Up to 11,000 legs grown using a 30 mm pitch
 - In 3x3 mm² area
 - Process offers tremendous <u>flexibility</u> for configuring microdevices
 - Using conventional IC-type processing

Electrochemically Deposited Bi₂Te₃ Legs Using Thick Photoresist Templates

Energy Harvesting Program Review

TE Microdevice Fabrication

Energy Harvesting Program Review

TE Microdevice Fabrication (2)

Power Conditioning and Charge Control

Requirements

- Power Conditioning
 - Variable power output from TE converter
 - Under on/off catalytic burner operation
 - If "natural" temperature gradient heat source
 - Voltage regulation required
 - Efficiency issues
 - Volume limitations
 - As compact and lightweight as possible
- Charge Control
 - Constant potential
 - Parasitic drain from control circuitry
 - Efficiency

Power Conditioning and Charge Control

Approach

- Integrate JPL system components for 100mW and 5W power source devices.
- Test integrated 100mW and 5W power sources to remote sensor specifications.
- Evaluate charge control design for button cells using charge/discharge interrupt devices for efficiency and temperature performance.
- Conduct long term float charge characterization of button cell and Dsized lithium ion cells.
- Characterize cell performance over temperature range.
- Accomplishments to date:
 - Surveyed commercial charge control circuits for lithium ion batteries.
 - Evaluated charge control circuits for D-sized lithium ion cells.
 - Identified sources for lithium ion cells and charge control circuits for 100mW and 5W power systems.

Status

- Accomplishments to date:
 - Tools for flexible thermal/electrical analysis developed
 - Now focusing on full designs for various device configurations
 - Heat generation, heat transfer and power generation models integrated
 - Technology for TE micodevice fabrication demonstrated
 - Leveraged by other JPL programs focusing on basic scientific and technical issues related to cooling applications and very low power devices (mW)
 - Now testing feasibility of all fabrication steps
 - First full prototype fabricated
 - ▲ Based on a combination of electrochemistry and IC processing techniques
 - Initial study of miniature catalytic burners completed
 - Defined burner design characteristics for integration with micro-TEG
 - Set up test stand for evaluation of performance of catalytic heaters
 - Demonstrated steady-state operation
 - ▲ With suitable physical footprint, temperature and heat flux characteristics
 - Preliminary work on power conditioning/charge control completed
 - Rechargeable Li-ion battery sizing
 - ▲ Based on state-of-the-art available technology and for various duty cycles
 - Parts for electronics being procured

California Institute of Technology

Plans for Remainder of Program

Heat source

- Complete catalytic burner development and characterization
 - Evaluate supported platinum catalysts and zirconia and silica wicks/substrates.
 - Examine other liquid fuels such as ethanol and higher hydrocarbons
 - Investigate and test integrated architectures for burner and heat collection
 - Determine 3-dimensional design for optimal air utilization in the catalyst layer.

TEMG

- Procure, test small bulk thermopiles adapted to high heat fluxes
 - 10-20W/cm²
- Fully operational prototype microdevices to be fabricated and tested by end of FY00
 - With complete source integration in FY01
- <u>Li-ion rechargeable batteries</u>
 - Design study, selection and testing of state-of-the-art technology
 - Evaluation of advanced solid electrolyte Li-ion technology for integration
- Power conditioning and system integration
 - Design, develop and test power conditioning electronics
 - Test micro-TEGs coupled to selected heat source technologies
 - Integrate and test complete prototype power package

TEMGs: Future directions

- High efficiency, long life, ultra compact power sources
- Integration with System On A Chip program (JPL-CISM)
 - On-chip power sources (mWs to mW per mm³ range)
 - ARPS: use of advanced radioisotope heat sources
 - ▲ 500-800 mm small particles nuclear fuel ("Paintable" heater)
 - Possibly combined a-voltaics/thermoelectrics
 - Use of energy harvesting schemes ("power skin")
- Develop further current IC-ECD techniques for SOAC
 - New materials, structures and device concepts
 - Low-dimensional effects on electrons and phonons have the potential to significantly increase the ZT, conversion efficiency
 - Use of high energy density fuels
 - Potential for very high electrical power output densities
 - Use advanced MEMS-type processing techniques
 - Electrochemical fabrication

On-Chip Power Source

Return to Agenda

Next Presentation

Slide 28